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LElTER TO THE EDITOR 

Finite-range scaling for a one-dimensional system with 
long-range interactions 

K Uzelac and Z Glumac 
Institute of Physics, University of Zagreb, POB 304, 41001 Zagreb, Croatia, Yugoslavia 

Received 4 January 1988 

Abstract. A procedure, similar to the finite-size scaling, is proposed for systems with 
long-range interactions. It is applied to the one-dimensional Ising model with interactions 
decaying as l/li-jl'+' with distance l i - j i .  The critical temperature and exponent U are 
calculated for U S  1. 

In recent years, finite-size scaling (FSS) has been widely used as an efficient technique 
among other renormalisation group ( RG) approaches, especially in the analysis of 
critical behaviour in low-dimensional systems (for a review see Barber (1983)). Its 
advantages in comparison to the direct space and other RG methods have been its 
better convergence and its easier tractability, especially for different problems with 
discrete symmetries. A class of problems difficult to handle within the direct space 
RG are systems with long-range interactions. Due to the non-local character of the 
interactions, these systems have been studied principally within momentum space 
through the E expansions around upper (Fisher el a1 1972) and lower (BrCzin et a1 
1976, Kosterlitz 1976, Bulgadaev 1984) critical dimensions, which correspond to the 
4 - E and 2 + E expansions for systems with short-range interactions. However, the 
intermediate region, which for short-range interaction systems has been studied using 
a number of direct space RG techniques including FSS, could not be explored to the 
same extent there. This letter is an attempt to give a new and more direct approach 
to this region by using the long-range interaction property as a basic scaling parameter 
in order to construct a scaling procedure similar to the FSS. 

We take as an example the one-dimensional Ising model with power law decaying 
interactions represented by the Hamiltonian 

= -E ~ l - , l s l s J  (1) 
IJ 

where i and j denote sites on a chain and Ji l -J i  = Jo/l i -j l is the interaction between 
Ii -jlth neighbours. For 0 < U S 1 this system has a phase transition at finite T, (Dyson 
1969), which is of mean field type for U < 0.5 and non-classical for 0.5 < U S  1. The 
point U = 1 is analogous to the case d = n = 2 of the n-component short-range interaction 
system. It divides the region T, # 0 from T, = 0. The transition is mediated by topologi- 
cal defects and has an essential singularity instead of power law critical behaviour. 
For U >  1, T, = O  and short-range behaviour takes place (Kosterlitz 1976). Critical 
behaviour in the region 0.5 < u s  1 has already been examined by different approximate 
methods including the extrapolations of numerical results for finite chains (Nagle and 
Bonner 1970) and two different RG approaches. One is an E expansion in U around 
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the mean field edge (T = 0.5 by Fisher et af (1972). The other is the expansion around 
CT = 1 (Kosterlitz 1976) following the method of Polyakov (1975). 

In the present approach the intention is to use the exact results which can be 
obtained for an  infinite chain with finite range of interactions N defined as 

The basic idea is then to establish the scaling relations between two such systems with 
different finite ranges and  relate them to the critical properties of the system with 
infinite range. The procedure is analogous to that of FSS and relies on a similar 
assumption. Let C (  t )  be some critical quantiiy diverging at T, ( t  = ( T - Tc)/  T,). Then 
we assume that the finite range of interaction will prevent this divergence and produce 
a correction depending on the ratio of the range and correlation length of the infinite- 
range system N / & ,  i.e. 

C,(t) = C A t ) f ( . ~ / t x ) .  (3)  

Applying (3)  to two systems with different ranges N and M it is straightforward to 
obtain the scaling relation for the correlation length 

t ~ ( f )  = ( N / M ) S v [ ( N / M )  '""fl  (4) 

where the critical temperature and critical exponent are calculated in a standard way 
and are given by the expressions 

~ N ( O ) / ~ M ( O ) =  N / M  ( 5 )  

For Hamiltonian (1) tN and tw can be calculated by a transfer matrix method. 
As illustrated in figure 1, grouping the spins by N and changing to new, N-component 
variables a, transforms the problem into a nearest-neighbour problem with 2 N  degrees 
of freedom per site. The components a,([') adopt the values i l  corresponding to the 
ith spin of the j t h  column in figure 1 .  The transfer matrix T is then expressed by 

T,,,+i = exp(-{P[H,,,+1 +(H,  + H,+,)/21)) (7) 

ai- I nJ nJ+l 

Figure 1. Chain for the case N = 3, drawn in zig-zag. Interactions J , ,  J , ,  J ,  are represented 
by full, long broken and short broken lines respectively. a, is a three-component variable 
describing all configurations of 3-spins in column j .  
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where 

N - l  

HJ=- 2 J N f m  a,( i )a , ( i+tn) .  
m = l  i = l  

The correlation length is given by 

5~ = N/ln(A, /AJ  ( 9 )  

where A l  and A2 are the two largest eigenvalues of T. The matrix T is not symmetric. 
Originally of order 2N, it can be reduced by a factor of two. 

The numerical calculations presented here have been performed up to the range 
N = 8. Scaling between ranges N - 1 and N has been considered. The results for 
critical temperature and critical exponent Y in the region T,#O are displayed for 
different values of U from 0.1 to 1 as a function of N in tables 1 and 2 respectively. 

Table 1. Results for critical temperature T, as a function of scaled ranges ( M ,  N )  and 
parameter U. The last column shows the extrapolated values. 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 
0.98 
1 .oo 

6.9774 
5.61 18 
4.6294 
3.8912 
3.3168 
2.8568 
2.4797 
2.1643 
1.8959 
1.7761 
1.7082 
1.6645 

8.0396 
6.2772 
5.0679 
4.1900 
3.5240 
3.0007 
2.5774 
2.2267 
1.9301 
1.7981 
1.7233 
1.6751 

8.9123 
6.7883 
5.3888 
4.4010 
3.6665 
3.0975 
2.6417 
2.2665 
1.9502 
1.8095 
1.7298 
1.6784 

9.6500 
7.1951 
5.6338 
4.5577 
3.7702 
3.1668 
2.6871 
2.2939 
1.963 1 
1.8159 
1.7324 
1.6786 

10.2868 18.759 
7.5277 10.552 
5.8271 7.270 
4.6783 5.483 
3.8487 4.339 
3.2187 3.530 
2.7207 2.916 
2.3139 2.421 
1.9719 2.008 
1.8196 1.828 
1.7332 1.734 
1.6774 1.677 

Table 2. Results for critical exponent U as a function of scaled ranges ( M ,  N )  and parameter 
U. The last column shows the extrapolated values. 

0.1 2.770 
0.2 2.500 
0.3 2.312 
0.4 2.185 
0.5 2.108 
0.6 2.071 
0.7 2.073 
0.8 2.110 
0.9 2.186 
0.95 2.239 
0.98 2.276 
1 .oo 2.302 

3.021 
2.654 
2.405 
2.241 
2.139 
2.090 
2.088 
2.131 
2.225 
2.292 
2.339 
2.374 

3.258 
2.192 
2.486 
2.286 
2.164 
2.103 
2.097 
2.146 
2.254 
2.334 
2.391 
2.433 

3.479 
2.916 
2.555 
2.324 
2.184 
2.113 
2.104 
2.156 
2.278 
2.369 
2.435 
2.483 

3.686 
3.027 
2.615 
2.356 
2.200 
2.121 
2.109 
2.164 
2.297 
2.399 
2.473 
2.528 

8.71 
4.81 
3.39 
2.70 
2.35 
2.17 
2.13 
2.22 
2.61 
3.40 
4.90 
8.06 
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For U < 1 both series of results show a monotonic dependence on N, while their 
convergence varies considerably with U. This convergence deserves more detailed 
investigation in the future, for comparison with studies existing for the FSS (Privman 
and Fisher 1983), as well as in order to improve our results quantitatively. At present, 
we limit ourselves to reporting (in the last columns of tables 1 and 2 )  the results 
obtained by extrapolation to N =CO using the asymptotic corrections. The correction 
of the form ( l / N ) "  was applied to T, and to y = Y-' for U > 0.5. In the mean field 
region, however, the values of vM.N fit better to the form ( M /  N)". The parameter x 
and proportionality constant are adjustable and depend on U, so that the error of the 
extrapolations themselves also depends on U, but it was estimated to be a few per cent 
for the whole region considered. 

Figures 2 and 3 represent comparisons of these extrapolated results with those 
obtained by other methods. 

2t 

1 I 

. 

t 

0 0.5 1.0 
a 

Figure 2. Extrapolated results for the critical temperature normalised by zero-temperature 
energy: Fc = Tc/[Jo( (  1 +U)] (open circles) compared to the results of Nagle and Bonner 
(1970) (crosses). 

Results for critical temperature (figure 2 )  are compared with those available from 
Nagle and Bonner (1970) and show good agreement. 

As should be expected, a comparison of different approaches shows more diversity 
for the critical exponent v (figure 3).  The discrepancy of our results is largest around 
U = 0.5, which can be attributed (as for the results of Nagle and Bonner) to the neglect 
of logarithmic corrections. In the mean field region the deviations from the exact value 
l /u grow with decreasing U. This could be related to the fact that our truncation has 
a stronger effect when U is decreased, which slows down the convergence. In the 
non-trivial region our values are systematically higher than those of Nagle and Bonner. 
Few additional points taken close to U = 1 show good agreement with the U = 1 - E 

expansion. However, the essential singularity in U = 1 is not reproduced at the present 
stage but manifests itself through a large exponent v. 

The results presented here cover only the T, # 0 region, i.e. cr s 1, where long-range 
interactions are relevant. When applying the same procedure to U > 1, a changeover 
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Figure 3. Extrapolated results for Y (open circles), compared to the exact results (full 
curve), Fisher et a1 (1972) (broken curve), Kosterlitz (1976) (chain curve) and Nagle and 
Bonner (1970) (crosses). 

in the regime is observed and shows up in two ways: ( Tc)M,N changes into a decreasing 
function of N, while v becomes diverging with N. 

In conclusion, we have shown that the proposed procedure gives results for arbitrary 
U which are qualitatively good and quantitatively comparable with those obtained by 
other approximate methods. Further studies of convergence are currently under con- 
sideration. We expect that this method could be a useful tool for other problems 
involving long-range interactions. To conclude, let us mention one fault in comparison 
with usual FSS: the lack of a beautiful interpretation through conformal invariance 
theory. 

We acknowledge interesting discussions with S BariSiC. One of the authors (KU) is 
grateful to P Bak and A Aharony for useful and stimulating discussions. This work 
has been partially supported by Yu-US DOE grant JF 738. 
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